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We develop and test three algorithms for diffusion Monte Carlo simulations in non-Euclidean manifolds. The

methods are based on the construction of the “velocity” distribution by rejection techniques and are capable
of functioning in a broad class of non-Euclidean spaces generated by holonomic constraints. The formulation
of the propagator for non-Euclidean manifolds avoids the use of Lagrange multipliers; it is derived instead

from the Feynman quantization in manifolds proposed by DeWitt. The manifolds are mapfeR® by

using stereographic projection coordinates. Numerical tests are conducted for the particle in a ring of unit
radius subjected to a sinusoidal potential, for the electron in the field of an infinitely massive proton, and for

a water molecule modeled as an asymmetric top subjected to an external field.

1. Introduction typically larger by 1 or 2 orders of magnitude compared to the
intermolecular degrees of freedom. A number of empirical

Diffusion Monte Carlo (DMC) is a stochastic algorithmsed . g
potential energy surface models capable of achieving spectro-

to determine, in general, the ground state wavefunction andSCO ic precision treat hiah-frequency dearees of freedom
energy of quantum systems. DMC exploits the isomorphism pic p 9 q y deg

between the (imaginary) time dependent Sdimger equation quantum mechanicalfy. . .
and the diffusion equation in the Euclidean space of equal !N @number of works we have learned that the disparate time

dimension. The potential energy surface plays the role of a sink Sc@les have a profound impact on the convergence of quantum
or source for the diffusion process. The original formulation Monte Carlo methods like DME!™*# Using both simple models

by Anderso is an algorithm that simulates the diffusion of a @nd molecular clusters, we have shown that using holonomic
numberN of replicas of a physical particle (called psips) using constraints can increase the efficiency of path integral .3|mulla-
a two part strategy. The popularity of the DMC apprdaish tions by orders of magnitude at temperatures below which high
likely the result of its simple implementation, and its linear degrees of freedom are predominantly in the ground state. The
scalability with dimension. DMC finds two main applications mprovement in efficiency that can be gained by using holo-

in theoretical chemistry. It is frequently used to calculate the NOMIC constraints has been recognized by the community. We

ground electronic state of atoms and molecgtésThe particle are aware of two methods that have been developed to treat
statistics, which give rise to the Pauli exclusion principle, are diffusion Monte Carlo simulations in non-Euclidean spaces. The

often accounted for with approximations. Usually, the location first one is by Sarsa et lin their work, the forces of constraint

of the nodal surface is found by other first-principle approxima- &re obtained classically using a set of Lagrange multipliers. The
tions; the DMC solution is exact for bosonic systems. The Multipliers are calculated at every time step. The resulting forces

second popular application is found in condensed matter physics Of constraint are added to the classical Langevin equation in
where nuclear motion is quantiZed and the ground statell Cartesian coordinates. The integration of the latter over the time

for a number of atoms (and/or weakly bound molecules) is step produ'ces an additional drift term for the diffusion process.
required. For both of these applications, the literature is 1€ clear importance of the advance made by Sarsa’esal.
voluminous, and the cited references are only a representative’€flécted by the number of growing applications of their
sample. It is more difficult to obtain information about the Method:*"22The second class of methods is by Béakhere
excited states of a quantum system with DMC; however, 'otations are treated by vector spaces. The theory used'b)ﬁBuch
progres& 13along these lines has been reported. is more general, as it is applicable to cosets that arise from
Cartesian coordinates yield the simplest quantum Monte Carlo N0lonomic constraints. The method developed by Buch,
algorithms; however, Cartesian coordinates are too limiting for NOWeVver, requires vector spaces. Recently, other groups have
applications in important problems in molecular physics. Of Mmade use of generalizations of the DMC algorithm to dif-
particular interest to us is the simulation of condensed matter férentiable manifolds. In particular, work on the fixed-phase
with theories that demand the use of non-Euclidean spaces. Chiefimulation of the fractional quantum Hall effect on the Haldane
among these theories are those that make use of holonomicsPheré® using stereographic projection coordinaté8has led
constraints to handle disparate time scales. There are several® @dvances related to the one we propose here for molecular
kinds of constraints that are often important in molecular dynamics.
physics. Examples difficult to handle with Cartesian coordinates ~ Therefore, we are driven to seek general, more efficient
alone are simulations of aggregates of covalent non-linear methods for DMC simulations of molecular systems in non-
molecules. The covalent stretches have a characteristic frequencyeuclidean spaces. The methods we propose in this Article
circumvent the calculation of Lagrange multipliers and avoid
* Corresponding author. the use of vector spaces. To see how DMC methods in
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alternative coordinates can be superior to the methods availableThe spaces?! and T¢ have zero scalar curvature but are non-

presently, one needs to consider the problem of finding the Euclidean, non-simply connected spaces.

ground state of the water octamer. One would need to compute A number of complications arise in quantum mechanics when

24 Lagrange multipliers at every propagation step for every coordinates other than Cartesian are used. For example, the

replica and run a simulation in 72 dimensions. For the water canonical quantization rules (in the position basis), for quantizing

octamer, the methods reported here cost as much as a 48he momentum and position operators with Cartesian coordinates

dimensional simulation without the need to optimize multipliers no longer apply in a non-Euclidean manifold.

at every step. The classical expression for the Hamiltonian in non-Euclidean
The present Article is a summary of our efforts to extend manifolds is

DMC to manifolds relevant to molecular dynamics mapped with

stereographic projection coordinafég®In section 2 we present & _ 1.

the general theory. For brevity, we omit the derivationsbof Apa) = 2gu PP, + V@ (3)

and the metric tensag,, on all these spaces expect far.

Derivations of these quantities for various molecular simulations whereq = ¢, ¢?, ..., g is a configuration point ifV¢. p, are

can be found in a number of recent articlésl’” Section 3 the canonical conjugate momenta

contains our results. Numerous simulations for the particle in a

ring of unit radius subjected to a sinusoidal potential, and for _9.719,9)

the electron in the field of an infinitely massive proton are used W a0 (4)

to confirm that the approaches we develop in section 2 converge.

To llustrate the power of the algorithms, we simulate a molecule angge is the inverse of the metric tensor dif, an entity that

in an external field using a rigid asymmetric ellipsoid of inertia  ontains all the geometric information foud, including the

space. This last example is non-trivial to solve with conventional gffective mass for the system (e.g., the moments of inertia if

methods. Finally, section 4 contains discussions and conclusionsyjd s an inertia ellipsoid). In generay” depends on the

configuration; therefore, if we attempt to use the canonical

2. Method guantization rules directly, we produce operator ordering
In DMC simulations, the time-dependent Satirmer equa- ambiguities.
tion in RY A general quantization rule exists for all curvilinear and all
non-Euclidean differentiable manifold%The time-dependent
Y K, Schralinger equation in a generic differential manifole with
—ih—- =2V — Vy 1) metric tensorg,, is
ot 2m v
is solved for the ground state energy and wavefunction by —iha—wzfﬁA W — Vi (5)
propagating in imaginary time = it. In imaginary time, the ot 278

time-dependent Schdinger equation irR¢ is isomorphic to a _ _

diffusion equation with the potential energy surface acting as a whereAg is the Laplace-Beltrami operator,

source-sink of “particles”. In the original DMC approach by

And_ersonl, the part|cles_(called psips) are rephcas_ of the _physu_:al A= g'waﬂav + g”V[au In /det(gw)] 3, + (3ﬂg‘”)av (6)
particle(s). These replicas are made to move in configuration

space by an amoumtx chosen from a Gaussian distribution To develop diffusion Monte Carlo methods, we must now
answer the following questions. How does diffusion take place
_ m m(AX)2 on the surface of a sphere or on a general manifold? Further,
WAXY) = 27AAT ex 2hAT @ how can one simulate such process numerically? One can

construct quantum Monte Carlo (QMC) methods with non-

After the propagation of the psips population by the set of Cartesian coordiantes, but only a handful of publications on the
random numbergax, a birth-disappearance step is performed subject can be foun®2®-32 It is possible to simulate diffusion
according to the value o — Ve, Where Vi is a reference numerically in manifolds. Perhaps the questions had been raised
energy. The value oY is adjusted after the move and the for the first time when the problem of quantizing in the curved
birth-disappearance step is performed for all psips. This adjust-space times of general relativity by using Feynman path integrals
ment is necessary to maintain the population number of psipswas first considered by DeWitt. The DeWitt formalism is
approximately constant. achieved by selecting to evaluate the classical action for the

In this Article, we refer to a manifoldvi¢ as a set of matrix element of the time evolution operator at the initial point
configuration points for a physical systefi?>26An Euclidean of the sliceq. DeWitt derives the form for the short-time
manifold is a configuration space that can be mapped faithfully evolution propagator matrix element; when this is converted
(i.e., point by point) with a global set of mutually orthogonal by a Wick rotation to imaginary time propagation <€ it), it
axis. We use the symbdkd to represent ad-dimensional becomes
Euclidean space only if it is mapped with Cartesian coordinates 1 e
throughout. Many important physical systems require non- _ [ \¥e a2
Euclidean manifolds. Points i, the 2-dimensional sphef2, o rATlq,T) (Znh) g DAt
the inertia ellipsoid If) for the rotation of a non-linear tofd, —1/4 1. .,
and toroidsTd (E:onformation space fat torsions) are traditci)fn- Atlan)g exr{— ES(q A7) (7)
ally mapped with angular variables. However, the ranges of
these variables are open set®ftherefore, these spaces cannot whereg is the determinant of the metric tensor evaluated: at
be considered Euclideas? and I® are examples of curved g = det[g..(q)]. The actionS(q,z7+At|qg,7) is defined as the
spaces, for which the Riemannian curvature scalar is a constantintegral
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T+AT

Sq.r+ATlgn) = [/ ()de ®)

T

and D(q',t+A7|q,7) is the Van Vleck determinard = det-
(DMV)i

&S
w 1o~V (9)
aq*oq
If the actionSand the Van Vleck determinabtare expanded
aboutg,r up to first order inAz, one obtains an approximate
expression for the matrix element of the time evolution operator

. L1 92 g
o - ATiqn) ~ [l 0

1 o
et~ s ATAd — ¢

1Arv} (10)
The potential energy in this expression contains an additive
guantum correction of ordéa® proportional to the Riemannian
curvature scalat*25 DeWitt derives this quantum correction
term by forcing the expansion of the propagator in eq 10 to
agree to first order with the Schdimger equation in (5). The
guantum correction t&% can be safely ignored because all the
manifolds that are of interest in the present Article have either
a zero or constant curvature scalrt®

The operator ordering issue shows itself as an infinite number

of possible expansions of the time evolution operator. This

freedom comes from the dependence of the metric tensor on
configuration space, and the freedom to evaluate it at any point

inside the time interval. Expanding the action at a particular
point along the interval],q] other than the initial point produces

guantum correction terms to the potential that may be different

from the Riemannian curvature scalar.

To use the DeWitt formula to derive quantum Monte Carlo
algorithms, we need a global one-to-one npvIi¢ — RY so
that nearly every point iivi¢ can be accessed lohindependent
coordinates) = (g, ..., ¢, ..., q%), and so that-o < f* < o
O u. We have found that this restriction eh is a sufficient
condition to derive the FeynmatKac equivalent in manifolds,
which allows one to interpret the random fluctuation of all

Avilés and Curotto
Mathematically, this is represented by the following equation:
W(a.Aq) T(Ag—Ad) =W ,Aq) T(AG—Ag) (12)
It should be noted that if we can drop the configuration
dependence oW

W(AQ) T(AG—AQ) = WAQ)T(AG—AQ)  (13)

the random walk inAq produces a Gaussian distribution for
Ag. For the more general case, the reader should notejtkat
g + Ag, andq = g + AQ as one may be tempted to say at
first. It is simple to verify that setting equal to either value
would violate the detailed balance condition in eq 12. Therefore,
eq 12 alone is insufficient to determine a unique algoritgm.
andqg' must be selected independentlyAd'. Yet,qandq' are
not arbitrary; their physical meaning is the position of the psips
in configuration space. Thereforg,and g must be sampled
from the ground state wavefunction as the DMC algorithm
approaches convergence.

We choose the traditional uniform distribution f(iAq'—AQ)
by updating the value of\q during the walk with

Ad = Aq+ y(n —0.5) (14)

wherey is a set ofd uniformly distributed random numbers in
[0,1] andy is a parameter that is adjusted to produce a 50%
rejection rate. To satisfy all the requirements embodied in eq
12 and to account for the configuration dependence, we explore
the following three choices, expressed in pseudo-code.

eMethod 1:

Step 1: Drawd random numbers in [0,1] and compuheg
with eq 14.

Step 2: Useay andAq from the previous psip, and lef be
the configuration of the present psip.

Step 3: Compute the acceptance probabHtior Aq':

’ 2 v /] V
o min{ 1,ex;{— 9,,(NA"AT” | 9, (@DAT'Aq ]}
(15)

2hAT 2hAT
Step 4: Move the psip by — d + Aq if the move is
accepted or by — g + Aq if rejected.

possible paths as a Brownian process. The same condition on step 5: SetAq — Aq if the move is accepted, and repeat

M allows for the interpretation of the imaginary time evolution

of an ensemble of replicas as a diffusion process; then we can

replace the solution of one (the S¢tieger equation) with the
simulation of the other (diffusion equation) 9. If in eq 10

we letg,, equal a diagonal matrix containing the masses of the
physical particles, we obtain the usual DPI formula for finite
temperature simulations iR9. The DMC step distribution for

from Step 1 for all the psips.

eMethod 2:

Step 1: Drawd random numbers in [0,1] and compuke
with eq 14.

Step 2: Use\q from the previous psip, and lgt = q be the
configuration of the present psip.

Step 3: Compute the acceptance probabiitipr Aq' using

such case is the Gaussian in eq 2. Therefore, by analogy, thegq 15.

DeWitt quantization formula in eq 10 leads to the following
generalization for the step distribution d

gwAd‘Aq”}

W(q,AQ) = A exp{ iy (12)

Our approach to develop a generalization of DMC for non-
Euclidean manifolds is to performdadimensional random walk
on Aq to reproduce the distribution in eq 11 by a rejection
technique. The “game of chance” first proposed by Anderson
is unchanged but for one important detail; the distribution of

Step 4: Move the psip bg — d + Aq if the move is
accepted or by — g + Aq if rejected.

Step 5: SetAq — Aq if the move is accepted and repeat
from Step 1 for all the psips.

eMethod 3:

Step 1: Drawd random numbers in [0,1] and compuhe
with eq 14.

Step 2: UseAq from the previous psip, leg be the position
of the present psip, then draw another set of random numbers
in [0,1], and computel = g + y(y — 0.5).y is the same as in
eq 14.

steps to propagate the ensemble of replicas (or psips) is no longer Step 3: Compute the acceptance probabHitior Agq' with
Gaussian in general, unless the metric tensor is a constantq 15.

independent of configuration. The approach employed to
generate the random walk ikq must satisfy detailed balance.

Step 4: Move the psip bg — g + Aq if the move is
accepted or by — g + Aq if rejected.
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Step 5: SetAq — Aq if the move is accepted and repeat TABLE 1: Ground State Energies for the Two Test Systems

from Step 1 for all the psips. in Units of Vo
After all the psips are moved by either one of the methods st R?
above, the usual branching process is carried out using the DMC. method 1 —0.9620-+ 0.0065 —0.9825% 0.0017
potential energy surfadeMethod 3 is a generalization of e pMC, method 2  —0.9647+ 0.0046
12 DMC, method 3  —0.9639+ 0.0053

diagonalization —0.965399+ 1 x 10 —0.9828133: 1 x 10°°
W(a.AQ) T(AG—AQ) T(g—0) = _ o
W, AG) T(Aq—Aq) T(q—q) (16) The value ofA7 is 1.0 x 10~* au for most of the simulations.
We use an unusually small step size as part of our testing
whereT(g—(') is a uniform distribution. The walk is still only ~ procedure because we are interested to learn whether the
onAd, which is saved aadqg from move to move, whereas the SPDMC methods can be impacted by possible quasiergodicity
value ofq is reset for every psip moved to the initial position. arising from the homotopy of the spatéWe make no attempt
Furthermore, the psip is moved ' if the move is accepted  to optimize the step size because the system is of sufficiently
or by Aq if the move is rejected; the psip is never movedto small dimension to allow us to be as careful as possible in our
Choosingq as the position of the psips to be moved is comparison with diagonalization results. However, some simu-
consistent with the DeWitt formula in all three strategies listed lations are repeated witht = 1.0 x 1072 au for the purpose
above g is the “prepoint” at the moment that the time evolution of comparing them with those that used a smaller step.

operator is applied to the psips ensemble. After the initial “warming” cycle, we run the simulation for
. another 1&6moves over which we collect the energy and position
3. Numerical Tests data. For the particle in a ring, the psips are moved according

3.1. Particle in a Ring with a Non-confining External to the random variablA&, with distributionW(z, A&) equal to

Potential. To distinguish between the traditional approach in
Euclidean spaces and the present methods in manifolds, we W(zZ,AE) = Aex% —( &) } (19)
compare simulations for the following two systems. Z2 + 4)2hAr

(1) A particle in St with a unit radius.

(2) A particle in SL. Ais a normalization constant, arzds the position of the psip
All our quantities are expressed in atomic units. The mass of before a move byAZ is implemented. All three strategies
the particle is 207 au, and the potential eneryiese identical ~ Presented in section 2 are tested. The psips are replicated or
for both systems: annihilated according to the value ¥f— V¢ at the end of a
move-branching cycle for all psips. The value\¢ts is adjusted
V=V 4x 17) to maintain the psip population count to 1000.
%44 Without the configuration dependence, namelyHéreq 19
becomes
The potential function has a minimum value-e¥y atx = —2,
and a maximum oftVy at x = +2; V tends to zero at both _ _ . m
asymptotes. The right-hand side of eq 17 transformétoos WAY) Aex;{ 2A AXZ} (20)

0 for the particle in a ring of unit radius if we interpregs the
stereographic projection coordinate fdrand we transform back ~ Therefore, the algorithms in section 2 are expected to produce,
to the angular variable. Therefore, the “exact” solution for the in the R! case, a Gaussian distribution &x with the proper
S system can be obtained by diagonalizing the following standard deviation/Az/m. We use the rejection technique
Hamiltonian matrix, obtained by expanding Saflirgger’s with the appropriate trivial modifications rather than using the
equation in the free particle in a ring bases, usual Box-Muller algorithm. The preliminary work oR! is a
stepping stone toward the more complex algorithms proposed
Ho=_" 5 4+ lo(é_. +6.) (18) in section 2, and we use this approach to test our code.
Toomr ! 2 Vii+l i—1 For theS! case, the distribution of values AE is non-trivial.
In the course of the simulation we accumulate ¢Blues of
The system irR! can be easily solved with the discrete variable A&, and we analyze the distribution by creating 1000 bins
representation (DVR); we use the method developed by Colbertbetween the largest and the smallest valua&f The result is
and Miller* to expand Schminger's equation in the position  graphed in Figure 1, where the histogram points are connected
vector space. by a thin line. TheA& distribution has a mean of zero, a standard
The two test systems are chosen with identical mass anddeviation of 0.001 72 bohr, and a skewness close to zero;
potential energy parametehg = 1 hartree. Therefore, the zero  however, it is leptokurtic. For ease of comparison, we draw in
point energy difference between them is a direct measure of Figure 1 a Gaussian distribution with the same mean and
the topological effects on the ground state. The ground statestandard deviation (thick line). Additionally, in Figure 1 we plot
energy of the particle in a ring witR = 1 bohr and the particle  the step distribution for the same systemRih (dashed line),
in Rt with the same mass, and experiencing the same potential,for comparison with the other two distributions. The step
can be found in the last row of Table 1. We experiment with distribution inS? is visibly broader than théx distribution in
several basis sizes (and cutoff values for the DVR computation) R for the identical system. Comparison between the thin and
to produce the estimate of the truncation and cutoff errors the thick lines in Figure 1 highlights the large difference in
associated with these two numbers. Despite our choice of unitkurtosis between the distribution of eq 19 and a Gaussian
radius, the ground state energy of the two test systems isdistribution with equal mean and variance. For aesthetic reasons,
significantly different. we only graph thé\& distribution for the first method. The other
The SPDMC simulations are carried out as follows: We two methods produce distributions that are statistically identical
perform a 18 move cycle to reach the asymptotic distribution. to the one in Figure 1.

hZ
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T T T T T T T T T 2 COS@
L I/,\\Particle inR' [Eq. 20)] 1 £(0) = 1—sin6
500 — 1 \ -
1 . and the factor 44(0)? + 4] outside the square brackets in
i eq 21 is needed to transforfxd to A& so that the ground state
wavefunction obtained with the angular coordinate can be
compared with the histogram generated by the SPDMC simula-
tions. The histograms generated from all three SPDMC simula-
tions are statistically identical; therefore, we only present the
- one produced by method 1. For the particle in Euclidean space,
. the rejection method to produce a Gaussian distributiom\for
1001 i together with the usual branching process from the potential
term yields the ground state energy tabulated in the second row,
, ) third column of Table 1. This value is also in excellent
-0.004 -0.002 Aoi 0.002 0.004 agreement with the DVR value, found in the same column, in

] ) o o the bottom row. Finally, in Figure 3 we compare the wave-

Figure 1. Comparison of the step distribution for the particle in a function obtained by the DVR of Colbert and Miller, and the

ring of unit radius (thin line), a Gaussian distribution of equal mean . - L .
and variance (thick line), and the step distribution for the particle in a Nistogram of psips positions accumulated during the DMC

(22)

Particle ina S' [Eq. (19)] 1

'S
=Y
=3
-
-
-

\
\
\
\
\
\
\

Gaussian curve with
same mean and variance
as Eq. (19)

Relative Probability
(%)
(=3
(=]
T

%)

=1

=]
T

line with identical mass and potential energy (dashed line). simulation. ) . .
3.2. Coulomb Problem with the Rotational Barrier. Let
08T ' T ' ' ' ' 4 us consider the following remapping of the three-dimensional

Euclidean space,
X = exp(—§&) sin @ cos¢

y=exp(=§&) sinf sing
z=exp(=§&) cosb (23)

where 0 and ¢ are the familiar spherical polar angles and
exp(=&) replaces the radial coordinate. It should be noted that
the partitioning ®:R® — R™ ® S? is achieved, butR" is
remapped: ®:R3— R ® S2 — R1 ® $2 The subspacé? is

not remapped with stereographic projections, because the
algorithms are applied to a one-dimensional isotropic problem,
for which the variablesf and ¢ are cyclic. Using the

Normalized wavefunction

€ (bohr) transformation law for the metric
Figure 2. Comparison of the wavefunction obtained by diagonalization
(thick line), with the histogram of psips positions generated by DMC ' ox”
(thin line), for the particle in a ring of unit radius. O = B_X“ vag/”' (24)

The simulation of the particle in a ring with all three methods ;4 usingg, = &, for the Euclidean metric i3, one derives
yields the ground state energies tabulated in the second column, 4 straigﬁtyforwgrvd way the following expreséion

of Table 1. The error tabulated in the same column is 1.982
times the standard deviation. All three are equal to each other 10 0
and to the diagonalization value within the statistical error. _ .

— . =exp(—2 2
Furthermore, all three values are significantly different from G =€ PC-22) 8 Zmz 4 2 (25)
the ground state energy obtained with the same mass and . o . .
potential inRL. The value of the energy reported in Table 1 for Thus, the classical Hamiltonian for a particle of masg an

method 2 is obtained withr = 1.0 x 1073 au. isotropic potential becomes

We also compare the ground state wavefunctions. For all the 0 2
SPDM(_: simulations, we collect all the positions of the psips T= = exp(%) pez +— + pgz +V(E) (26)
population every 1000 moves. This produces a sample contain- 2m sirt 6

ing roughly 16 values of&. The resulting distributions are
compared against the ground state obtained by diagonalizationwhereas, the LaplaeeBeltrami operatdt® takes the following
The results for the particle in a ring (using method 1) are graphed form

in Figure 2. The thick line in Figure 2 is obtained by plotting

¥ 1 & ,cos®d & a)

V2 = ex z(—+——+.——+———

1 © 4 P&) 30> sinf Q9> Sin0 00  pE2  0E
— z c,cosfP)[—— 0<6 <27 (21) (27)

2
27" 0y +4 The first three terms inside the parentheses constitute the angular
momentum operatok 2. BecauseV only depends org, we
versuss(6). The numbers, are the entries of the ground state  expand with spherical harmonics, left multiply by the complex
eigenvector in the free ring basis obtained by the diagonalization conjugate of the basis, and integrate over the solid angle. The
of the Hamiltonian matrix in eq 18. The abscissa is result is the following Hamiltonian operator (in atomic units)
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T i T " i T " TABLE 2: Energies for the | = n — 1 Rydberg States
| (Hartree)
| n En DMC (method 2)
0151 7 1 2 —0.12500 —0.145464+ 0.032188
g 2 3 —0.05555 —0.056925+ 0.004448
g T 3 4 -0.03215 —0.031511+ 0.001454
z 4 5 —0.02000 —0.020148+ 0.000673
z o 7 5 6 —0.01388 —0.013955+ 0.000371
if 6 7 —0.01020 —0.010275+ 0.000336
E r 7 8 —0.00781 —0.007881+ 0.000085
2z 8 9 —0.00617 —0.006172+ 0.000068
0.05— - 9 10 —0.00500 —0.005028&+ 0.000061
10 11 —0.00413 —0.004116+ 0.000066
| . | . | . fl,=f3,=—f5,=—f5, =sinfcosysiny (34)
-4 -3 -2 -1
x (bohrs) 1 _ .2 .
Figure 3. Comparison of the DVR wavefunction (thick line), with F2, = sin" 0 sin’ v (35)
the histogram of psips positions generated by DMC (thin line), for the 5 .
particle inR. The mass and the potential energy model are identical f2,=sin’ 6 cog y (36)
to those used to generate the graph in Figure 2.
A\ 10+ 1) f3,=cog 6 (37)
H= D(Z)(?z - a_g) tog eXP(Z) + V(E) 3 ) 28
(28) 23— COS (38)
3 _
This is the differential equation that one solves by DMC, with f3a=1 (39)

m= 1, V(&) = —exp), the Coulomb potential, and with> Y . )
0. The classical imaginary time Lagrangian for this one- The symbolJ represents the Jacobian matrix element for

dimensional problem is the tra}nsformatlion between the Euler angleand th_e stereo-
graphic projectionyt. The &1, £2, £ — 0, ¢, v map is
o1 »  l(+1)
=5 exp(-25)E — exp(Z) — exp€) (29) _ (48%)° + (4&%°
2 2 O=2sin", [ —5 515 (40)
E)Y+E)Y+E)+4

Therefore, a random walk is performed to produce the following
AE distribution

32 3
5= tarr {EHEP+E) 4) B tan_l(s_z ) @)
48 3
exf — 5x7 exp(-22)(88)] (30) N i
y = €V F €+ ) 4+tan_l(s_2)
Simulations comprising Fomoves are performed for several 48 3 (42)
values ofl, using aAt = 2.0 x 1072 atomic units ancdN =
1000. The wavefunction obtained with a given valuelof  These expressions can be easily inverted,
corresponds to the= n — 1 Rydberg states of the hydrogen
atom and is nodeless of course. The energies obtained with (1 + cos? sm¢ ty
method 2 are compared agaifst= —2"In"2in Table 2. It is £ = cos? cos¢ + 2 2 +1| (@3)
clear in Figure 4 that the step distribution for the exporggist 2 2 oty
not Gaussian. 1- C052 sin=——+ 2
3.3. Ground State of a Rigid Asymmetric Top. To d+y
demonstrate the usefulness of the methods, we consider the 1+ COS— sin 2
following low-dimensional but non-trivial example. Lét (1 E= =sin3 COSL oty +1] (44)
= 1,2,3) represent the eigenvalues of the moment of inertia CO% sin——+ 2
tensor, then the appropriate metric tensor for a rigid top is
0 ¢_w1+cos§sm¢2w
G = =1, J/t J7 fl (31) 53 = Sinz sin > b 1/) + 1| (45)
- cosi sint—+—

where the symbot;, represents a set of eighteen independent \ye use geometric arguments similar to thoseSfbto derive
functions obtained by writing the kinetic energy of a rigid the map and its inverse from Eulerian angles to the stereographic
asymmetric top in the center of mass frame in terms of the Euler projections by using the four-dimensional quaternion space and

anglest, ¢, y. The functionsf;, expressed with Euler angles  the spherical constraint. To simplify the notation further, we
can be found in classical mechanics textbo%ﬂ(s introduce seven auxi”ary quantities

f1,=cosy (32) o' = VI6E) + (€92 + (P + (€2 — 4 (46)

Fh=sirty 59 ¢ = V@ + @ (47)
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d3 - (dZ)Z d4 - (d1)2 (48) 10 — [=2 step distribution 7]
d5 — 8(51)2 _ 4[(51)2 + (52)2 + (53)2 _ 4] (49) ol — Gaussian with identical p and c;_
®=-E’+(E®*+ )’ +4 (50) 100 .
d'= (& + (&)Y + (£ — 4 (51)  F - .
Then the Jacobian is § 60 -
& |
~ 16d2§1 2d5§2 2d5§3 sl _
d1d6 d1d2d6 dld2d6 i '_ i
5 12 3 13 2
S | L
d d da d d EY) 0,01 0 0.01 0.02
d5 8&152 53 85153 52 Ag
d_4 o - ? T + E, Figure 4. Steps distribution for the electron in the field of an infinitely
massive proton (thin line), compared with a Gaussian distribution of
and the non-vanishing;;,v, functions are equal mean and variance (thick line).
122 £347\2 f ' f
@1:(4&&12501) (53) _
dd
0016 _SPDI\?—0.0I()IO +0.00003)
13 | g2.47\2 H
2= (—45 < fgd) 54
d'd® g
5-0.0]65 —
(L g2 _ o _8AFE-Ed)@EEe+2d)  F
12~ = 12— " Taa— (d6)2dld2 =
(55) -0.017
64(4'E° + £4d") A y
f %2 = T (56) 001751 I Global minimum I | B
1( 2) 3.7 0 | % Temperlaiure (K) 100 I 1%
f§2 _ 64(45°E° — &d) (57) Figure 5. Energies of a rigid water molecule in an external field.
6\4
CY) simulations are presented in Figure 5. The global minimum with
od* 2 Vo = —0.04 hartree is-0.017 320 5 hartree. The ground state
f32= [—62 - 1] (58) energy (-0.016 10+ 0.0002 hartree) is substantially greater
(d) than the global minimum and is statistically indistinguishable
from the finite temperature average energy at 50 K obtained by
f3,=1,= E _ (59) stereographic projection path integtél.
d6 2
(@) 4. Discussion
3 _
f=1 (60) This Article introduces a new set of algorithms for the DMC

simulation in differential manifolds that can be mappado

Clearly, g., is analytical; however, expressing its elements as {hq equidimensional Euclidean space. We make use of stereo-

functions of &’ does not provide any gdditional insight. graphic projections for spaces that are combinationsLo$?,

Therefore, we simply evaluate;, and J/; separately and 13 andT¢, and we develop a logarithmic bijection for the

translate the sum in eq 31 directly into code. remapping ofR*. The numerical tests confirm that one can

~ The eigenvalues of the inertia tensirare chosen to be  deyelop a variety of SPDMC algorithms to find ground state

identical to those of rigid water, namely, Iy, I~ 12614, 8588,  energies and wavefunctions in key differential manifolds

4026 atomic units, respectively. The rotations are hindered USingprovided a faithful mappingM® — RY is available. The

an external scalar field represented by the function procedures are very similar to the original one; the only

1 ) 3 difference is the process used to generate the steps by which to

E+&+¢ (61 move replicas. The non-Gaussian distribution of the steps arises

EYD2+ E2+ (B2 + 4 from the configuration dependence of the metric tensor. Three

] ] different methods that satisfy detailed balance to generate

The value ofVy is 0.04 hartree. The potential energy models a yandom numbers with the appropriate distribution are tested.

non-trivial sinusoidal external field when expressed in terms  The particle inS! has a significantly different ground state

of the Eulerian angles/ is symmetric under of the exchanges energy and wavefunction compared to a particleRinwith

g — &, therefore, it is simple to find the direction (i.g.= &* identical mass and potential energy. The step size distribution

= &2 = &%) along which both the maximum and the minimum  for the particle inS? has a variance larger than the step size

+ V/3V/4 exist. These are af{= &= &= — V/4/3) and ¢! distribution for the identical systems iR!. Furthermore, the

= £2 = £3 = + 4/4/3) respectively. The results of the SPDMC distribution is narrower than a Gaussian distribution of the same

V(Ellézlgs) = _VO
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variance but symmetric about the mean of zero. All the here can be easely generalized to systems with larger dimen-
numerical tests are in excellent agreement with the results sions, such as a cluster of rigid non-linear molecules.
obtained analytically or by diagonalization. All three algorithms ~ Of course, the first two examples have been chosen because
we implement to generate the non-Gaussian distribution of the it is possible to solve them in a number of different ways. In
steps produce statistically identical results. We learn that the particular, the following applies for the electron in the field of
difference between andq is arbitrary, as long as the values a proton: Even with the map used here, namety exp(=§),

of either q or  are sampled from the correct position oOne cannotsimulate the= 0 case given the negative singularity
distribution. of the Coulomb potential for that case. The walkers constantly
drift to larger values o5 forced by deeper values &fe at
every iteration. The problem could be solved by using an
artificial barrier that accounts for a finite size of the proton.
Alternatively, one could employ the elegant machinery of the
Duru—Kleinert transformation to stabilize the source near the
Singularity of the potentials. This approach has led to the analytic
solution of the three-dimensional Coulomb problem by path
integrals?® However, the use of the DurtKleinert transforma-

An externalnon-confiningpotential energy surface for the
particle in a ring is chosen to make our test as stringent as
possible. It is very important to test stochastic algorithms for
non-Euclidean spaces with non-confining potentials, because
routine assumptions regarding space boundaries do not apply
leading to catastrophic failurés. Although most torsional
degrees of freedom are hindered, the tumbling of rigid bodies

is not confined in general; thus it is important to design careful tion to stabilize stochastic simulations around singular potentials

Fests to ensure the methods. are applicable to comple>.< problem%as never been attempted. Because the Coulomb potential with
in condensed matter physics. Therefore, the algorithms ar€5 rotational barrier is confining (i.e., it prevents moves taking

subjegted to very stringent tests with external non-confinipg walkers to negative values of, the DMC algorithms could
potentials. Unlike other non-Euclidean spaces, the set of pointsp4ye sampled as the independent variable for the configuration.
in a ring (or any higher dimensional toroid) is not & simply Eyrthermore, one could run the DMC algorithm witias the
connected space. In contrast, the Haldene sphere used in ref 2%,qependent variable and withta sampled from a Gaussian

is a simply connected space. Therefore, this Article is the first gistripution: It is well-known that the transformation of
the construction of SPDMC algorithms in non-simply connected gperator forR, equal to the Laplacian i®’. The hydrogen
manifolds. In our simulations in the particle in a ring space, we ztom is a simple and familiar example of a coset space not
make use of unusually small time steps to learn whether or not generated by the imposition of constraints.

the homotopy of the space generates any quasiergodicity in the There exist other possibilities to develop SPDMC methods
DMC random walk. As we have explained, the particle in a in manifolds that are not pursued here. One clear alternate
ring, though seemingly trivial, is a multiply connected space: approach would be the extension of the ground state path integral
A particle in a ring can move from, to ¢y in an infinite number ~ method recently proposed by Sarsa éf&@ecause their scheme

of ways; it can take a direct path moving counterclockwise, or relies entirely on DPI simulations, it would be straightforward

it can get there by moving around the ring any number of times to apply the DeWitt formula directly to their algorithm. A less
(windings) in the clockwise direction, and then winding around rigorous, but perhaps equally functional, approach could be
the ring any number of times in the counterclockwise direction obtained by modifying the Langevin equation; one would add
before stopping ap,. One of the reasons why angular variables the following drift terms

do not work like Cartesian coordinates to simulate diffusion in
such complicated spaces is one must impose special boundary
conditions and keep track of the windings that have taken place.
These subtleties become important when non-confining poten-
tials are U?ed-t lttr:S 'nOtI an eta?_y taS'}f l\jlo itncgrpfl)rate t:]h‘zseto the regular random Gaussian process. The quantities symbol-
requirements into the implementations of Monte Carlo methods, ; u i i

though some authors have reported success along these Iineléﬁg 25)}/25 av are the Christoffel connections of the second
(e.q., ref 32). The crux of the methods we propose in the present ’

Article is to remap this space by using a “Cartesian-like” L 1.

coordinate (the stereographic projection) so that the issue of 0 =59"(9:9,, + 0,95, — 9,95) (63)
imposing boundary conditions and the homotopy issue disappear

in the implementation of the quantum methods. However, as 1he terms in the integrand of eq 62 can be interpreted as the
we have learned in previous work, all the characteristics of the yrces of constraint; these can be obtained without any assump-
space are still there and sometimes show up as numericakjon about their nature, and without the need to compute
difficulties such as quasiergodic behavior in what should be & | 3grange multipliers. Assuming such an approach works, it
“straightforward” one-dimensional problem. In using such a could be used to study alternative theories based on the
small step size we ensure ourselves that no such numericalexpansion point of the time evolution operator. For example,
difficulty is encountered in our numerical tests when a non- gne could choose to evaluatg, and T'” at the midpoint
confining potential energy surface (typical of what one finds in  petweery andg + Aq, because these quantities would be known
condensed matter applications), is used. It turns out that theseyith this scheme before the move; the resulting approach would

difficulties are not present in what may at first appear as a much pe consistent with the Weyl expansion of the time evolution
more formidable problem of simulating diffusion on the inertia operator®

ellipsoid, as in our third example. Nevertheless, the patrticle in

a ring space finds many applications in condensed molecular Acknowledgmentis made to the donors of the Petroleum
physics (e.g., rotations on a surface), and any proclaimed newResearch Fund, administered by the ACS (grant number 40946-
methods to handle holonomic constraints should be made toB6) for partial support of this research. Support is also gratefully
meet this important benchmark. The three methods we introduceacknowledged from The Stacy Ann Vitetta '82 Professorship

ST g~ Ty, ATAD (62)



2618 J. Phys. Chem. A, Vol. 111, No. 13, 2007

Fund, and The Ellington Beavers Fund for Intellectual Inquiry

at Arcadia University.

References and Notes

(1) Anderson, J. BJ. Chem. Phys1975 63, 1499.

(2) Ceperley, D. M.; Alder, DSciencel986 231, 555.

(3) Ceperley, D. M.; Alder, B. JJ. Chem. Physl984 81, 5834.

(4) Lester, W. A., Jr.; Hammond, B. [Annu. Re. Phys. Chem199Q
41, 283.

(5) Reynolds, P. J.; Ceperley, D. M.; Alder, B. J.; Lester, W. A.JJr.
Chem. Phys1982 77, 1378.

(6) Buch, V.J. Chem. Phys1992 97, 726.

(7) Sarsa, A.; Schmidt, K. E.; Moskowitz, J. \l.. Chem. Phys2000Q
113 44.

(8) Clary, D. C.J. Chem. Phys2001, 114, 9725.

(9) Lewerenz, MJ. Chem. Phys1996 104, 1028.

(10) Sun, H.; Watts, R. QJ. Chem. Phys199Q 92, 603.

(11) Sandler, P.; Oh, Jung, J.; Sz&ziak, M. M.; Buch, V.J. Chem.
Phys.1994 101, 1378.

(12) Lee, H.-S.; Herbert, J. M.; McCoy, A. B.. Chem. Phys1999
110 5481.

(13) Sandler, P.; Buch, V.; Sadlej,J.Chem. Physl996 105 10387.

(14) Curotto, EJ. Chem. Phys2005 123 134102.

(15) Russo, M. F., Jr.; Curotto, B. Chem. Phys2003 118 6806.

(16) Russo, M. F., Jr.; Curotto, H. Chem. Phys2004 120, 2110.

(17) Avilés, M. W.; Curotto, EJ. Chem. Phys2005 122, 164109.

Avilés and Curotto

(18) Unpublished results.

(19) Jiang, H.; Xu, M. Z.; Hutson, J. M.; B&x; Z.J. Chem. Phy2005
123 054305.

(20) Jiang, H.; Baic, Z. J. Chem. Phys2005 122, 244306.

(21) Paesani, F.; Gianturco, F. A.; Whaley, K.B.Chem. Phy2001,
115 10225.

(22) Moskowitz, J. W.; Béic, Z.; Sarsa, A.; Schmidt, K. El. Chem.
Phys.2001 114, 10294.

(23) M-Alaverdian, V.; Bonesteel, N. E.; Ortiz, Ghys. Re. Lett. 1997,
79, 5286.

(24) Schutz, BA First Course in General Relatity; Cambridge Press:
New York, 1985.

(25) Curtis, W. D.; Miller, F. RDifferential Manifolds and theoretical
physics Academic Press: New York, 1985.

(26) Kleinert, H.Path integrals in Quantum Mechanics, Statistics and
Polymer physicsWorld Scientific: Singapore, 1990.

(27) Rosenthal, GJ. Phys. A. Math. Ger2001, 34, L169.

(28) Kuharski, R. A.; Rossky, P. J. Chem. Phys1985 82, 5164.

(29) Marx, D.; Miser, M. H.J. Phys. Condens. Mattet999 11, R117.

(30) Marx, D.; Nielaba, PPhys. Re. A. 1992 45, 8968.

(31) Miller, T. F., lll; Clary, D. C.J. Chem. Phys2003 119, 68.

(32) Clary, D. C.J. Chem. Phys2002 116, 8262.

(33) DeWitt, B. S.Rev. Mod. Phys1957, 29, 377.

(34) Colbert, D. T.; Miller, W. H.J. Chem. Phys1992 96, 1982.

(35) Sarsa, A.; Schmidt, K. E.; Magro, W. R. Chem. Phys200Q
113 1366.

(36) Mizrahi, M. M. J. Math. Phys1975 16, 2201.



