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We develop and test three algorithms for diffusion Monte Carlo simulations in non-Euclidean manifolds. The
methods are based on the construction of the “velocity” distribution by rejection techniques and are capable
of functioning in a broad class of non-Euclidean spaces generated by holonomic constraints. The formulation
of the propagator for non-Euclidean manifolds avoids the use of Lagrange multipliers; it is derived instead
from the Feynman quantization in manifolds proposed by DeWitt. The manifolds are mappedonto Rd by
using stereographic projection coordinates. Numerical tests are conducted for the particle in a ring of unit
radius subjected to a sinusoidal potential, for the electron in the field of an infinitely massive proton, and for
a water molecule modeled as an asymmetric top subjected to an external field.

1. Introduction

Diffusion Monte Carlo (DMC) is a stochastic algorithm1 used
to determine, in general, the ground state wavefunction and
energy of quantum systems. DMC exploits the isomorphism
between the (imaginary) time dependent Schro¨dinger equation
and the diffusion equation in the Euclidean space of equal
dimension. The potential energy surface plays the role of a sink
or source for the diffusion process. The original formulation
by Anderson1 is an algorithm that simulates the diffusion of a
numberN of replicas of a physical particle (called psips) using
a two part strategy. The popularity of the DMC approach2 is
likely the result of its simple implementation, and its linear
scalability with dimension. DMC finds two main applications
in theoretical chemistry. It is frequently used to calculate the
ground electronic state of atoms and molecules.3-5 The particle
statistics, which give rise to the Pauli exclusion principle, are
often accounted for with approximations. Usually, the location
of the nodal surface is found by other first-principle approxima-
tions; the DMC solution is exact for bosonic systems. The
second popular application is found in condensed matter physics,
where nuclear motion is quantized6-8 and the ground state9-11

for a number of atoms (and/or weakly bound molecules) is
required. For both of these applications, the literature is
voluminous, and the cited references are only a representative
sample. It is more difficult to obtain information about the
excited states of a quantum system with DMC; however,
progress12,13 along these lines has been reported.

Cartesian coordinates yield the simplest quantum Monte Carlo
algorithms; however, Cartesian coordinates are too limiting for
applications in important problems in molecular physics. Of
particular interest to us is the simulation of condensed matter
with theories that demand the use of non-Euclidean spaces. Chief
among these theories are those that make use of holonomic
constraints to handle disparate time scales. There are several
kinds of constraints that are often important in molecular
physics. Examples difficult to handle with Cartesian coordinates
alone are simulations of aggregates of covalent non-linear
molecules. The covalent stretches have a characteristic frequency

typically larger by 1 or 2 orders of magnitude compared to the
intermolecular degrees of freedom. A number of empirical
potential energy surface models capable of achieving spectro-
scopic precision treat high-frequency degrees of freedom
quantum mechanically.9

In a number of works we have learned that the disparate time
scales have a profound impact on the convergence of quantum
Monte Carlo methods like DMC.14-18 Using both simple models
and molecular clusters, we have shown that using holonomic
constraints can increase the efficiency of path integral simula-
tions by orders of magnitude at temperatures below which high
degrees of freedom are predominantly in the ground state. The
improvement in efficiency that can be gained by using holo-
nomic constraints has been recognized by the community. We
are aware of two methods that have been developed to treat
diffusion Monte Carlo simulations in non-Euclidean spaces. The
first one is by Sarsa et al.;7 in their work, the forces of constraint
are obtained classically using a set of Lagrange multipliers. The
multipliers are calculated at every time step. The resulting forces
of constraint are added to the classical Langevin equation in
Cartesian coordinates. The integration of the latter over the time
step produces an additional drift term for the diffusion process.
The clear importance of the advance made by Sarsa et al.7 is
reflected by the number of growing applications of their
method.19-22 The second class of methods is by Buch,6 where
rotations are treated by vector spaces. The theory used by Buch6

is more general, as it is applicable to cosets that arise from
holonomic constraints. The method developed by Buch,6

however, requires vector spaces. Recently, other groups have
made use of generalizations of the DMC algorithm to dif-
ferentiable manifolds. In particular, work on the fixed-phase
simulation of the fractional quantum Hall effect on the Haldane
sphere23 using stereographic projection coordinates24,25has led
to advances related to the one we propose here for molecular
dynamics.

Therefore, we are driven to seek general, more efficient
methods for DMC simulations of molecular systems in non-
Euclidean spaces. The methods we propose in this Article
circumvent the calculation of Lagrange multipliers and avoid
the use of vector spaces. To see how DMC methods in* Corresponding author.
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alternative coordinates can be superior to the methods available
presently, one needs to consider the problem of finding the
ground state of the water octamer. One would need to compute
24 Lagrange multipliers at every propagation step for every
replica and run a simulation in 72 dimensions. For the water
octamer, the methods reported here cost as much as a 48
dimensional simulation without the need to optimize multipliers
at every step.

The present Article is a summary of our efforts to extend
DMC to manifolds relevant to molecular dynamics mapped with
stereographic projection coordinates.24,25In section 2 we present
the general theory. For brevity, we omit the derivations ofΦ,
and the metric tensorgµν on all these spaces expect forR+.
Derivations of these quantities for various molecular simulations
can be found in a number of recent articles.14-17 Section 3
contains our results. Numerous simulations for the particle in a
ring of unit radius subjected to a sinusoidal potential, and for
the electron in the field of an infinitely massive proton are used
to confirm that the approaches we develop in section 2 converge.
To illustrate the power of the algorithms, we simulate a molecule
in an external field using a rigid asymmetric ellipsoid of inertia
space. This last example is non-trivial to solve with conventional
methods. Finally, section 4 contains discussions and conclusions.

2. Method

In DMC simulations, the time-dependent Schro¨dinger equa-
tion in Rd

is solved for the ground state energy and wavefunction by
propagating in imaginary timeτ ) it. In imaginary time, the
time-dependent Schro¨dinger equation inRd is isomorphic to a
diffusion equation with the potential energy surface acting as a
source-sink of “particles”. In the original DMC approach by
Anderson,1 the particles (called psips) are replicas of the physical
particle(s). These replicas are made to move in configuration
space by an amount∆x chosen from a Gaussian distribution

After the propagation of the psips population by the set of
random numbers∆x, a birth-disappearance step is performed
according to the value ofV - Vref, whereVref is a reference
energy. The value ofVref is adjusted after the move and the
birth-disappearance step is performed for all psips. This adjust-
ment is necessary to maintain the population number of psips
approximately constant.

In this Article, we refer to a manifoldMd as a set of
configuration points for a physical system.24,25,26An Euclidean
manifold is a configuration space that can be mapped faithfully
(i.e., point by point) with a global set of mutually orthogonal
axis. We use the symbolRd to represent ad-dimensional
Euclidean space only if it is mapped with Cartesian coordinates
throughout. Many important physical systems require non-
Euclidean manifolds. Points inS1, the 2-dimensional sphereS2,
the inertia ellipsoid (I3) for the rotation of a non-linear top,27

and toroidsTd (conformation space ford torsions) are tradition-
ally mapped with angular variables. However, the ranges of
these variables are open sets inRd; therefore, these spaces cannot
be considered Euclidean.S2 and I3 are examples of curved
spaces, for which the Riemannian curvature scalar is a constant.

The spacesS1 andTd have zero scalar curvature but are non-
Euclidean, non-simply connected spaces.

A number of complications arise in quantum mechanics when
coordinates other than Cartesian are used. For example, the
canonical quantization rules (in the position basis), for quantizing
the momentum and position operators with Cartesian coordinates
no longer apply in a non-Euclidean manifold.

The classical expression for the Hamiltonian in non-Euclidean
manifolds is

whereq ) q1, q2, ..., qd is a configuration point inMd. pµ are
the canonical conjugate momenta

andgµν is the inverse of the metric tensor onMd, an entity that
contains all the geometric information forMd, including the
effective mass for the system (e.g., the moments of inertia if
Md is an inertia ellipsoid). In general,gµν depends on the
configuration; therefore, if we attempt to use the canonical
quantization rules directly, we produce operator ordering
ambiguities.

A general quantization rule exists for all curvilinear and all
non-Euclidean differentiable manifolds.26 The time-dependent
Schrödinger equation in a generic differential manifoldMd with
metric tensorgµν is

where∆LB is the Laplace-Beltrami operator,

To develop diffusion Monte Carlo methods, we must now
answer the following questions. How does diffusion take place
on the surface of a sphere or on a general manifold? Further,
how can one simulate such process numerically? One can
construct quantum Monte Carlo (QMC) methods with non-
Cartesian coordiantes, but only a handful of publications on the
subject can be found.8,28-32 It is possible to simulate diffusion
numerically in manifolds. Perhaps the questions had been raised
for the first time when the problem of quantizing in the curved
space times of general relativity by using Feynman path integrals
was first considered by DeWitt.33 The DeWitt formalism is
achieved by selecting to evaluate the classical action for the
matrix element of the time evolution operator at the initial point
of the slice q. DeWitt derives the form for the short-time
evolution propagator matrix element; when this is converted
by a Wick rotation to imaginary time propagation (τ ) it), it
becomes

whereg is the determinant of the metric tensor evaluated atq:
g ) det[gµν(q)]. The actionS(q′,τ+∆τ|q,τ) is defined as the
integral

-ip
∂ψ
∂t

) p2

2m
∇2ψ - Vψ (1)

W(∆x) ) x m
2πp∆τ

exp{-
m(∆x)2

2p∆τ } (2)

H(p,q) ) 1
2
gµνpµpν + V(q) (3)

pµ )
∂ L (q̆,q)

∂q̆µ
(4)

-ip
∂ψ
∂t

) p2

2
∆LBψ - Vψ (5)

∆LB ) gµν
∂µ∂ν + gµν[∂µ ln xdet(gµν)]∂ν + (∂µg

µν)∂ν (6)

〈q′,τ+∆τ|q,τ) ) ( 1
2πp)d/2

g′-1/4D1/2(q′,τ+

∆τ|q,τ)g-1/4 exp[- 1
p
S(q′,τ+∆τ|q,τ)] (7)
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and D(q′,τ+∆τ|q,τ) is the Van Vleck determinantD ) det-
(Dµν),

If the actionSand the Van Vleck determinantD are expanded
aboutq,τ up to first order in∆τ, one obtains an approximate
expression for the matrix element of the time evolution operator

The potential energyV in this expression contains an additive
quantum correction of orderp2 proportional to the Riemannian
curvature scalar.24,25 DeWitt derives this quantum correction
term by forcing the expansion of the propagator in eq 10 to
agree to first order with the Schro¨dinger equation in (5). The
quantum correction toV can be safely ignored because all the
manifolds that are of interest in the present Article have either
a zero or constant curvature scalar.14-18

The operator ordering issue shows itself as an infinite number
of possible expansions of the time evolution operator. This
freedom comes from the dependence of the metric tensor on
configuration space, and the freedom to evaluate it at any point
inside the time interval. Expanding the action at a particular
point along the interval [q′,q] other than the initial point produces
quantum correction terms to the potential that may be different
from the Riemannian curvature scalar.

To use the DeWitt formula to derive quantum Monte Carlo
algorithms, we need a global one-to-one mapΦ:Md f Rd so
that nearly every point inMd can be accessed byd independent
coordinatesq ) (q1, ..., qµ, ..., qd), and so that-∞ < qµ < ∞
∀ µ. We have found that this restriction onΦ is a sufficient
condition to derive the Feynman-Kac equivalent in manifolds,
which allows one to interpret the random fluctuation of all
possible paths as a Brownian process. The same condition on
Md allows for the interpretation of the imaginary time evolution
of an ensemble of replicas as a diffusion process; then we can
replace the solution of one (the Schro¨dinger equation) with the
simulation of the other (diffusion equation) inMd. If in eq 10
we letgµν equal a diagonal matrix containing the masses of the
physical particles, we obtain the usual DPI formula for finite
temperature simulations inRd. The DMC step distribution for
such case is the Gaussian in eq 2. Therefore, by analogy, the
DeWitt quantization formula in eq 10 leads to the following
generalization for the step distribution inMd

Our approach to develop a generalization of DMC for non-
Euclidean manifolds is to perform ad-dimensional random walk
on ∆q to reproduce the distribution in eq 11 by a rejection
technique. The “game of chance” first proposed by Anderson
is unchanged but for one important detail; the distribution of
steps to propagate the ensemble of replicas (or psips) is no longer
Gaussian in general, unless the metric tensor is a constant
independent of configuration. The approach employed to
generate the random walk in∆q must satisfy detailed balance.

Mathematically, this is represented by the following equation:

It should be noted that if we can drop the configuration
dependence onW

the random walk in∆q produces a Gaussian distribution for
∆q. For the more general case, the reader should note thatq′ *
q + ∆q, andq′ * q + ∆q′ as one may be tempted to say at
first. It is simple to verify that settingq′ equal to either value
would violate the detailed balance condition in eq 12. Therefore,
eq 12 alone is insufficient to determine a unique algorithm.q
andq′ must be selected independently of∆q′. Yet, q andq′ are
not arbitrary; their physical meaning is the position of the psips
in configuration space. Therefore,q and q′ must be sampled
from the ground state wavefunction as the DMC algorithm
approaches convergence.

We choose the traditional uniform distribution forT(∆q′f∆q)
by updating the value of∆q during the walk with

whereη is a set ofd uniformly distributed random numbers in
[0,1] andγ is a parameter that is adjusted to produce a 50%
rejection rate. To satisfy all the requirements embodied in eq
12 and to account for the configuration dependence, we explore
the following three choices, expressed in pseudo-code.

•Method 1:
Step 1: Drawd random numbers in [0,1] and compute∆q′

with eq 14.
Step 2: Useq and∆q from the previous psip, and letq′ be

the configuration of the present psip.
Step 3: Compute the acceptance probabilityP for ∆q′:

Step 4: Move the psip byq′ f q′ + ∆q′ if the move is
accepted or byq′ f q′ + ∆q if rejected.

Step 5: Set∆q′ f ∆q if the move is accepted, and repeat
from Step 1 for all the psips.

•Method 2:
Step 1: Drawd random numbers in [0,1] and compute∆q′

with eq 14.
Step 2: Use∆q from the previous psip, and letq′ ) q be the

configuration of the present psip.
Step 3: Compute the acceptance probabilityP for ∆q′ using

eq 15.
Step 4: Move the psip byq′ f q′ + ∆q′ if the move is

accepted or byq′ f q′ + ∆q if rejected.
Step 5: Set∆q′ f ∆q if the move is accepted and repeat

from Step 1 for all the psips.
•Method 3:
Step 1: Drawd random numbers in [0,1] and compute∆q′

with eq 14.
Step 2: Use∆q from the previous psip, letq be the position

of the present psip, then draw another set of random numbers
in [0,1], and computeq′ ) q + γ(η - 0.5).γ is the same as in
eq 14.

Step 3: Compute the acceptance probabilityP for ∆q′ with
eq 15.

Step 4: Move the psip byq′ f q′ + ∆q′ if the move is
accepted or byq′ f q′ + ∆q if rejected.

S(q′,τ+∆τ|q,τ) ) ∫τ

τ+∆τ
L (q)dτ (8)

Dµν ) - ∂
2S

∂q′µ∂qν
(9)

〈q′,τ+∆τ|q,τ) ≈ [ 1
2π∆τp]d/2

g1/2

exp{- 1
2p∆τ

gµν∆qµ∆qν - 1
p

∆τV} (10)

W(q,∆q) ) A exp{-
gµν∆qµ∆qν

2p∆τ } (11)

W(q,∆q) T(∆qf∆q′) ) W(q′,∆q′) T(∆q′f∆q) (12)

W(∆q) T(∆qf∆q′) ) W(∆q')T(∆q′f∆q) (13)

∆q′ ) ∆q + γ(η - 0.5) (14)

P ) min{1,exp[-
gµν(q′)∆q′µ∆q′ν

2p∆τ
+

gµν(q)∆qµ∆qν

2p∆τ ]}
(15)
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Step 5: Set∆q′ f ∆q if the move is accepted and repeat
from Step 1 for all the psips.

After all the psips are moved by either one of the methods
above, the usual branching process is carried out using the
potential energy surface.1 Method 3 is a generalization of eq
12

whereT(qfq′) is a uniform distribution. The walk is still only
on ∆q′, which is saved as∆q from move to move, whereas the
value ofq is reset for every psip moved to the initial position.
Furthermore, the psip is moved by∆q′ if the move is accepted
or by ∆q if the move is rejected; the psip is never moved toq′.

Choosingq as the position of the psips to be moved is
consistent with the DeWitt formula in all three strategies listed
above.q is the “prepoint” at the moment that the time evolution
operator is applied to the psips ensemble.

3. Numerical Tests

3.1. Particle in a Ring with a Non-confining External
Potential. To distinguish between the traditional approach in
Euclidean spaces and the present methods in manifolds, we
compare simulations for the following two systems.

(1) A particle in S1 with a unit radius.
(2) A particle in S1.
All our quantities are expressed in atomic units. The mass of

the particle is 207 au, and the potential energiesV are identical
for both systems:

The potential function has a minimum value of-V0 atx ) -2,
and a maximum of+V0 at x ) +2; V tends to zero at both
asymptotes. The right-hand side of eq 17 transforms toV0 cos
θ for the particle in a ring of unit radius if we interpretx as the
stereographic projection coordinate forS1 and we transform back
to the angular variable. Therefore, the “exact” solution for the
S1 system can be obtained by diagonalizing the following
Hamiltonian matrix, obtained by expanding Schro¨dinger’s
equation in the free particle in a ring bases,

The system inR1 can be easily solved with the discrete variable
representation (DVR); we use the method developed by Colbert
and Miller34 to expand Schro¨dinger’s equation in the position
vector space.

The two test systems are chosen with identical mass and
potential energy parameters;V0 ) 1 hartree. Therefore, the zero
point energy difference between them is a direct measure of
the topological effects on the ground state. The ground state
energy of the particle in a ring withR ) 1 bohr and the particle
in R1 with the same mass, and experiencing the same potential,
can be found in the last row of Table 1. We experiment with
several basis sizes (and cutoff values for the DVR computation)
to produce the estimate of the truncation and cutoff errors
associated with these two numbers. Despite our choice of unit
radius, the ground state energy of the two test systems is
significantly different.

The SPDMC simulations are carried out as follows: We
perform a 106 move cycle to reach the asymptotic distribution.

The value of∆τ is 1.0× 10-4 au for most of the simulations.
We use an unusually small step size as part of our testing
procedure because we are interested to learn whether the
SPDMC methods can be impacted by possible quasiergodicity
arising from the homotopy of the space.17 We make no attempt
to optimize the step size because the system is of sufficiently
small dimension to allow us to be as careful as possible in our
comparison with diagonalization results. However, some simu-
lations are repeated with∆τ ) 1.0 × 10-3 au for the purpose
of comparing them with those that used a smaller step.

After the initial “warming” cycle, we run the simulation for
another 106 moves over which we collect the energy and position
data. For the particle in a ring, the psips are moved according
to the random variable∆ê, with distributionW(z, ∆ê) equal to

A is a normalization constant, andz is the position of the psip
before a move by∆ê is implemented. All three strategies
presented in section 2 are tested. The psips are replicated or
annihilated according to the value ofV - Vref at the end of a
move-branching cycle for all psips. The value ofVref is adjusted
to maintain the psip population count to 1000.

Without the configuration dependence, namely forR1, eq 19
becomes

Therefore, the algorithms in section 2 are expected to produce,
in the R1 case, a Gaussian distribution in∆x with the proper
standard deviationx∆τ/m. We use the rejection technique
with the appropriate trivial modifications rather than using the
usual Box-Muller algorithm. The preliminary work onR1 is a
stepping stone toward the more complex algorithms proposed
in section 2, and we use this approach to test our code.

For theS1 case, the distribution of values of∆ê is non-trivial.
In the course of the simulation we accumulate 107 values of
∆ê, and we analyze the distribution by creating 1000 bins
between the largest and the smallest value of∆ê. The result is
graphed in Figure 1, where the histogram points are connected
by a thin line. The∆ê distribution has a mean of zero, a standard
deviation of 0.001 72 bohr, and a skewness close to zero;
however, it is leptokurtic. For ease of comparison, we draw in
Figure 1 a Gaussian distribution with the same mean and
standard deviation (thick line). Additionally, in Figure 1 we plot
the step distribution for the same system inR1 (dashed line),
for comparison with the other two distributions. The step
distribution inS1 is visibly broader than the∆x distribution in
R1 for the identical system. Comparison between the thin and
the thick lines in Figure 1 highlights the large difference in
kurtosis between the distribution of eq 19 and a Gaussian
distribution with equal mean and variance. For aesthetic reasons,
we only graph the∆ê distribution for the first method. The other
two methods produce distributions that are statistically identical
to the one in Figure 1.

TABLE 1: Ground State Energies for the Two Test Systems
in Units of V0

S1 R1

DMC, method 1 -0.9620( 0.0065 -0.9825( 0.0017
DMC, method 2 -0.9647( 0.0046
DMC, method 3 -0.9639( 0.0053
diagonalization -0.965399( 1 × 10-6 -0.9828133( 1 × 10-6

W(z,∆ê) ) A exp{- 8m

(z2 + 4)2p∆τ
(∆ê)2} (19)

W(∆x) ) A exp{- m
2∆τ

∆x2} (20)

W(q,∆q) T(∆qf∆q′) T(qfq′) )
W(q′,∆q′) T(∆q′f∆q) T(q′fq) (16)

V ) V0
4x

x2 + 4
(17)

Hij ) p2

2mR2
δij +

V0

2
(δii+1 + δii-1) (18)
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The simulation of the particle in a ring with all three methods
yields the ground state energies tabulated in the second column
of Table 1. The error tabulated in the same column is 1.982
times the standard deviation. All three are equal to each other
and to the diagonalization value within the statistical error.
Furthermore, all three values are significantly different from
the ground state energy obtained with the same mass and
potential inR1. The value of the energy reported in Table 1 for
method 2 is obtained with∆τ ) 1.0 × 10-3 au.

We also compare the ground state wavefunctions. For all the
SPDMC simulations, we collect all the positions of the psips
population every 1000 moves. This produces a sample contain-
ing roughly 106 values ofê. The resulting distributions are
compared against the ground state obtained by diagonalization.
The results for the particle in a ring (using method 1) are graphed
in Figure 2. The thick line in Figure 2 is obtained by plotting

versusê(θ). The numberscn, are the entries of the ground state
eigenvector in the free ring basis obtained by the diagonalization
of the Hamiltonian matrix in eq 18. The abscissa is

and the factor 4/[ê(θ)2 + 4] outside the square brackets in
eq 21 is needed to transform∆θ to ∆ê so that the ground state
wavefunction obtained with the angular coordinate can be
compared with the histogram generated by the SPDMC simula-
tions. The histograms generated from all three SPDMC simula-
tions are statistically identical; therefore, we only present the
one produced by method 1. For the particle in Euclidean space,
the rejection method to produce a Gaussian distribution for∆x
together with the usual branching process from the potential
term yields the ground state energy tabulated in the second row,
third column of Table 1. This value is also in excellent
agreement with the DVR value, found in the same column, in
the bottom row. Finally, in Figure 3 we compare the wave-
function obtained by the DVR of Colbert and Miller, and the
histogram of psips positions accumulated during the DMC
simulation.

3.2. Coulomb Problem with the Rotational Barrier. Let
us consider the following remapping of the three-dimensional
Euclidean space,

where θ and φ are the familiar spherical polar angles and
exp(-ê) replaces the radial coordinate. It should be noted that
the partitioning Φ:R3 f R+ X S2 is achieved, butR+ is
remapped:Φ:R3f R+ X S2 f R1 X S2. The subspaceS2 is
not remapped with stereographic projections, because the
algorithms are applied to a one-dimensional isotropic problem,
for which the variablesθ and φ are cyclic. Using the
transformation law for the metric

and usinggµ′ν′ ) δµ′ν′ for the Euclidean metric inR3, one derives
in a straightforward way the following expression

Thus, the classical Hamiltonian for a particle of massm in an
isotropic potential becomes

whereas, the Laplace-Beltrami operator26 takes the following
form

The first three terms inside the parentheses constitute the angular
momentum operatorL2. BecauseV only depends onê, we
expand with spherical harmonics, left multiply by the complex
conjugate of the basis, and integrate over the solid angle. The
result is the following Hamiltonian operator (in atomic units)

Figure 1. Comparison of the step distribution for the particle in a
ring of unit radius (thin line), a Gaussian distribution of equal mean
and variance (thick line), and the step distribution for the particle in a
line with identical mass and potential energy (dashed line).

Figure 2. Comparison of the wavefunction obtained by diagonalization
(thick line), with the histogram of psips positions generated by DMC
(thin line), for the particle in a ring of unit radius.

[ 1

x2π
∑

n)-∞

∞

cn cos(nθ)] 4

ê(θ)2 + 4
0 < θ < 2π (21)

ê(θ) ) 2 cosθ
1 - sin θ

(22)

x ) exp(-ê) sin θ cosφ

y ) exp(-ê) sin θ sinφ

z ) exp(-ê) cosθ (23)

gµν ) ∂xµ′

∂xµ
∂xν′

∂xν
gµ′ν′ (24)

gµν ) exp(-2ê)(1 0 0
0 sin2 θ 0
0 0 1

) (25)

H ) 1
2m

exp(2ê)(pθ
2 +

pφ
2

sin2 θ
+ pê

2) + V(ê) (26)

∇2 ) exp(2ê)( ∂
2

∂θ2
+ 1

sin2 θ
∂

2

∂φ
2

+ cosθ
sin θ

∂

∂θ
+ ∂

2

∂ê2
- ∂

∂ê)
(27)
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This is the differential equation that one solves by DMC, with
m ) 1, V(ê) ) -exp(ê), the Coulomb potential, and withl >
0. The classical imaginary time Lagrangian for this one-
dimensional problem is

Therefore, a random walk is performed to produce the following
∆ê distribution

Simulations comprising 106 moves are performed for several
values ofl, using a∆τ ) 2.0 × 10-3 atomic units andN )
1000. The wavefunction obtained with a given value ofl
corresponds to thel ) n - 1 Rydberg states of the hydrogen
atom and is nodeless of course. The energies obtained with
method 2 are compared againstEn ) -2-1n-2 in Table 2. It is
clear in Figure 4 that the step distribution for the exponentê is
not Gaussian.

3.3. Ground State of a Rigid Asymmetric Top. To
demonstrate the usefulness of the methods, we consider the
following low-dimensional but non-trivial example. LetIλ (λ
) 1,2,3) represent the eigenvalues of the moment of inertia
tensor, then the appropriate metric tensor for a rigid top is

where the symbolfµν
λ represents a set of eighteen independent

functions obtained by writing the kinetic energy of a rigid
asymmetric top in the center of mass frame in terms of the Euler
anglesθ, φ, ψ. The functionsfµ′ν′

λ expressed with Euler angles
can be found in classical mechanics textbooks.25

The symbolJµ′µ represents the Jacobian matrix element for
the transformation between the Euler angleqµ′ and the stereo-
graphic projectionqµ. The ê1, ê2, ê3 f θ, φ, ψ map is

These expressions can be easily inverted,

We use geometric arguments similar to those forS1 to derive
the map and its inverse from Eulerian angles to the stereographic
projections by using the four-dimensional quaternion space and
the spherical constraint. To simplify the notation further, we
introduce seven auxiliary quantities

Figure 3. Comparison of the DVR wavefunction (thick line), with
the histogram of psips positions generated by DMC (thin line), for the
particle inR1. The mass and the potential energy model are identical
to those used to generate the graph in Figure 2.

TABLE 2: Energies for the l ) n - 1 Rydberg States
(Hartree)

l n En DMC (method 2)

1 2 -0.12500 -0.145464( 0.032188
2 3 -0.05555 -0.056925( 0.004448
3 4 -0.03215 -0.031511( 0.001454
4 5 -0.02000 -0.020148( 0.000673
5 6 -0.01388 -0.013955( 0.000371
6 7 -0.01020 -0.010275( 0.000336
7 8 -0.00781 -0.007881( 0.000085
8 9 -0.00617 -0.006172( 0.000068
9 10 -0.00500 -0.005028( 0.000061

10 11 -0.00413 -0.004116( 0.000066

f 12
1 ) f 21

1 ) -f 12
2 ) -f 21

2 ) sin θ cosψ sin ψ (34)

f 22
1 ) sin2 θ sin2 ψ (35)

f 22
2 ) sin2 θ cos2 ψ (36)

f 22
3 ) cos2 θ (37)

f 23
3 ) cosθ (38)

f 33
3 ) 1 (39)

θ ) 2 sin-1 x (4ê2)2 + (4ê3)2

(ê1)2 + (ê2)2 + (ê3)2 + 4
(40)

φ ) tan-1((ê1)2 + (ê2)2 + (ê3)2 - 4

4ê1 ) - tan-1(ê3

ê2) (41)

ψ ) tan-1((ê1)2 + (ê2)2 + (ê3)2 - 4

4ê1 ) + tan-1(ê3

ê2)
(42)

ê1 ) cos
θ
2

cos
φ + ψ

2 (1 + cos
θ
2

sin
φ + ψ

2

1 - cos
θ
2

sin
φ + ψ

2

+ 1) (43)

ê2 ) sin
θ
2

cos
φ - ψ

2 (1 + cos
θ
2

sin
φ + ψ

2

1 - cos
θ
2

sin
φ + ψ

2

+ 1) (44)

ê3 ) sin
θ
2

sin
φ - ψ

2 (1 + cos
θ
2

sin
φ + ψ

2

1 - cos
θ
2

sin
φ + ψ

2

+ 1) (45)

d1 ) x16(ê1)2 + [(ê1)2 + (ê2)2 + (ê3)2 - 4]2 (46)

d2 ) x(ê2)2 + (ê3)2 (47)

H ) - 1
2m

exp(2ê)( ∂
2

∂ê2
- ∂

∂ê) +
l(l + 1)

2m
exp(2ê) + V(ê)

(28)

L ) 1
2

exp(-2ê)ê̇2 -
l(l + 1)

2
exp(2ê) - exp(ê) (29)

exp{- 1
2∆τ

exp(-2ê)(∆ê)2} (30)

gµν ) Iλ Jµ
µ′ Jν

ν′ f µ′ν′
λ (31)

f 11
1 ) cos2 ψ (32)

f 11
2 ) sin2 ψ (33)
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Then the Jacobian is

and the non-vanishingf µ′ν′
λ functions are

Clearly, gµν is analytical; however, expressing its elements as
functions of êν does not provide any additional insight.
Therefore, we simply evaluatef µ′ν′

λ and J µ
µ′ separately and

translate the sum in eq 31 directly into code.
The eigenvalues of the inertia tensorIλ are chosen to be

identical to those of rigid water, namely,Ix, Iy, Iz ≈ 12614, 8588,
4026 atomic units, respectively. The rotations are hindered using
an external scalar field represented by the function

The value ofV0 is 0.04 hartree. The potential energy models a
non-trivial sinusoidal external field when expressed in terms
of the Eulerian angles.V is symmetric under of the exchanges
êµ f êν; therefore, it is simple to find the direction (i.e.,y ) ê1

) ê2 ) ê3) along which both the maximum and the minimum
( x3V0/4 exist. These are at (ê1 ) ê2 ) ê3 ) - x4/3) and (ê1

) ê2 ) ê3 ) + x4/3) respectively. The results of the SPDMC

simulations are presented in Figure 5. The global minimum with
V0 ) -0.04 hartree is-0.017 320 5 hartree. The ground state
energy (-0.016 10( 0.0002 hartree) is substantially greater
than the global minimum and is statistically indistinguishable
from the finite temperature average energy at 50 K obtained by
stereographic projection path integral.16

4. Discussion

This Article introduces a new set of algorithms for the DMC
simulation in differential manifolds that can be mappedonto
the equidimensional Euclidean space. We make use of stereo-
graphic projections for spaces that are combinations ofS1, S2,
I3, and Td, and we develop a logarithmic bijection for the
remapping ofR+. The numerical tests confirm that one can
develop a variety of SPDMC algorithms to find ground state
energies and wavefunctions in key differential manifolds
provided a faithful mappingMd f Rd is available. The
procedures are very similar to the original one; the only
difference is the process used to generate the steps by which to
move replicas. The non-Gaussian distribution of the steps arises
from the configuration dependence of the metric tensor. Three
different methods that satisfy detailed balance to generate
random numbers with the appropriate distribution are tested.

The particle inS1 has a significantly different ground state
energy and wavefunction compared to a particle inR1 with
identical mass and potential energy. The step size distribution
for the particle inS1 has a variance larger than the step size
distribution for the identical systems inR1. Furthermore, the
distribution is narrower than a Gaussian distribution of the same

Figure 4. Steps distribution for the electron in the field of an infinitely
massive proton (thin line), compared with a Gaussian distribution of
equal mean and variance (thick line).

Figure 5. Energies of a rigid water molecule in an external field.

d3 ) (d2)2 d4 ) (d1)2 (48)

d5 ) 8(ê1)2 - 4[(ê1)2 + (ê2)2 + (ê3)2 - 4] (49)

d6 ) -(ê1)2 + (ê2)2 + (ê3)2 + 4 (50)

d7 ) (ê1)2 + (ê2)2 + (ê3)2 - 4 (51)
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f 11
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d1d2 )2

(54)
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1 ) f 21

1 ) -f 12
2 ) -f 21

2 )
8(4ê1ê2 - ê3d7)(4ê1ê3 + ê2d7)

(d6)2d1d2

(55)
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(56)

f 22
2 )

64(4ê1ê2 - ê3d7)

(d6)4
(57)

f 22
3 ) [ 2d4
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- 1]2
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f 23
3 ) f32

3 ) 2d4

(d6)2
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f 33
3 ) 1 (60)
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ê1 + ê2 + ê3
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variance but symmetric about the mean of zero. All the
numerical tests are in excellent agreement with the results
obtained analytically or by diagonalization. All three algorithms
we implement to generate the non-Gaussian distribution of the
steps produce statistically identical results. We learn that the
difference betweenq andq′ is arbitrary, as long as the values
of either q or q′ are sampled from the correct position
distribution.

An externalnon-confiningpotential energy surface for the
particle in a ring is chosen to make our test as stringent as
possible. It is very important to test stochastic algorithms for
non-Euclidean spaces with non-confining potentials, because
routine assumptions regarding space boundaries do not apply,
leading to catastrophic failures.15 Although most torsional
degrees of freedom are hindered, the tumbling of rigid bodies
is not confined in general; thus it is important to design careful
tests to ensure the methods are applicable to complex problems
in condensed matter physics. Therefore, the algorithms are
subjected to very stringent tests with external non-confining
potentials. Unlike other non-Euclidean spaces, the set of points
in a ring (or any higher dimensional toroid) is not a simply
connected space. In contrast, the Haldene sphere used in ref 23
is a simply connected space. Therefore, this Article is the first
to demonstrate that the use of projective bijections allows for
the construction of SPDMC algorithms in non-simply connected
manifolds. In our simulations in the particle in a ring space, we
make use of unusually small time steps to learn whether or not
the homotopy of the space generates any quasiergodicity in the
DMC random walk. As we have explained, the particle in a
ring, though seemingly trivial, is a multiply connected space:
A particle in a ring can move fromφa to φb in an infinite number
of ways; it can take a direct path moving counterclockwise, or
it can get there by moving around the ring any number of times
(windings) in the clockwise direction, and then winding around
the ring any number of times in the counterclockwise direction
before stopping atφb. One of the reasons why angular variables
do not work like Cartesian coordinates to simulate diffusion in
such complicated spaces is one must impose special boundary
conditions and keep track of the windings that have taken place.
These subtleties become important when non-confining poten-
tials are used. It is not an easy task to incorporate these
requirements into the implementations of Monte Carlo methods,
though some authors have reported success along these lines
(e.g., ref 32). The crux of the methods we propose in the present
Article is to remap this space by using a “Cartesian-like”
coordinate (the stereographic projection) so that the issue of
imposing boundary conditions and the homotopy issue disappear
in the implementation of the quantum methods. However, as
we have learned in previous work, all the characteristics of the
space are still there and sometimes show up as numerical
difficulties such as quasiergodic behavior in what should be a
“straightforward” one-dimensional problem. In using such a
small step size we ensure ourselves that no such numerical
difficulty is encountered in our numerical tests when a non-
confining potential energy surface (typical of what one finds in
condensed matter applications), is used. It turns out that these
difficulties are not present in what may at first appear as a much
more formidable problem of simulating diffusion on the inertia
ellipsoid, as in our third example. Nevertheless, the particle in
a ring space finds many applications in condensed molecular
physics (e.g., rotations on a surface), and any proclaimed new
methods to handle holonomic constraints should be made to
meet this important benchmark. The three methods we introduce

here can be easely generalized to systems with larger dimen-
sions, such as a cluster of rigid non-linear molecules.

Of course, the first two examples have been chosen because
it is possible to solve them in a number of different ways. In
particular, the following applies for the electron in the field of
a proton: Even with the map used here, namelyr ) exp(-ê),
one cannot simulate thel ) 0 case given the negative singularity
of the Coulomb potential for that case. The walkers constantly
drift to larger values ofê forced by deeper values ofVref at
every iteration. The problem could be solved by using an
artificial barrier that accounts for a finite size of the proton.
Alternatively, one could employ the elegant machinery of the
Duru-Kleinert transformation to stabilize the source near the
singularity of the potentials. This approach has led to the analytic
solution of the three-dimensional Coulomb problem by path
integrals.26 However, the use of the Duru-Kleinert transforma-
tion to stabilize stochastic simulations around singular potentials
has never been attempted. Because the Coulomb potential with
a rotational barrier is confining (i.e., it prevents moves taking
walkers to negative values ofr), the DMC algorithms could
have sampledr as the independent variable for the configuration.
Furthermore, one could run the DMC algorithm withr as the
independent variable and with ar̆, sampled from a Gaussian
distribution: It is well-known that the transformation of
dependent variablesrR(r) ) P(r) produces a Laplace-Beltrami
operator forR+ equal to the Laplacian inR1. The hydrogen
atom is a simple and familiar example of a coset space not
generated by the imposition of constraints.

There exist other possibilities to develop SPDMC methods
in manifolds that are not pursued here. One clear alternate
approach would be the extension of the ground state path integral
method recently proposed by Sarsa et al.35 Because their scheme
relies entirely on DPI simulations, it would be straightforward
to apply the DeWitt formula directly to their algorithm. A less
rigorous, but perhaps equally functional, approach could be
obtained by modifying the Langevin equation; one would add
the following drift terms

to the regular random Gaussian process. The quantities symbol-
ized by Γ λν

µ are the Christoffel connections of the second
kind,24-26

The terms in the integrand of eq 62 can be interpreted as the
forces of constraint; these can be obtained without any assump-
tion about their nature, and without the need to compute
Lagrange multipliers. Assuming such an approach works, it
could be used to study alternative theories based on the
expansion point of the time evolution operator. For example,
one could choose to evaluategµν and Γ λν

µ at the midpoint
betweenq andq + ∆q, because these quantities would be known
with this scheme before the move; the resulting approach would
be consistent with the Weyl expansion of the time evolution
operator.36
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∫τ

τ+∆τ
Γλν

µ q̆νq̆λ dτ ≈ Γλν
µ ∆qν∆qλ

∆τ
(62)

Γλν
µ ) 1

2
gµF(∂λgνF + ∂νgFλ - ∂Fgλν) (63)
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